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An improved hybrid particle-finite element method has been developed for the simulation of
hypervelocity impact problems. Unlike alternative methods, the revised formulation computes
the density without reference to any kernel or interpolation functions, for either the density
or the rate of dilatation. This simplifies the state space model and leads to a significant
reduction in computational cost. The improved method introduces internal energy variables
as generalized coordinates in a new formulation of the thermomechanical Lagrange equations.
Example problems show good agreement with exact solutions in one dimension and good
agreement with experimental data in a three dimensional simulation.
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INTRODUCTION

Studies of hypervelocity impact phenomena are motivated by a variety of science and en-

gineering applications [1]. Examples include scientific research on planetary impacts [2] and

equations of state [3] and engineering research on the design of spacecraft shielding [4] and

kinetic energy penetrators [5]. The proceedings of a recent international symposium [1] show

that the use of computer simulation in this field is increasing, as improvements in numerical

methods and computing power make it possible to address problems of greater complexity

and larger scale. Simulation is of particular importance, as an adjunct to experimental work,

when material costs are high [6] or when impact velocities beyond the range of light gas guns

are of interest [7].

Simulation work in this field has applied a number of different numerical methods, based

on continuum mechanics, particle dynamics, or mixed kinematic schemes. Continuum meth-

ods [8] employ either an Eulerian hydrodynamic [9,10] or a Lagrangian finite element [11]
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approach, or some Arbitrary Lagrangian-Eulerian (ALE) based generalization of these tech-

niques [12,13]. A large majority of particle codes employ a smooth particle hydrodynamics

(SPH) technique [14,15,16], although some alternative particle based methods have been

proposed [17]. Some disadvantages of pure continuum or pure particle based methods [18]

have motivated the development of mixed continuum-particle formulations [4,19,20]. The

most widely used mixed method is a coupled particle-finite element technique [19]. This

technique initializes distinct material regions with either SPH particles or or Lagrangian

finite elements, then quantifies subsequent material interactions using a particle-to-surface

contact-impact algorithm. The alternative coupled particle-element method of Johnson and

co-workers [20] maps damaged or failed elements into particles, and again quantifies particle-

element interaction using a special contact algorithm. Both these methods are subject to

tensile instability and numerical fracture problems.

The alternative mixed method of Fahrenthold and co-workers [21] is based on a hybrid

particle-finite element formulation. This method in not subject to tensile instability and

numerical fracture problems and eliminates the requirement for special treatment of particle-

to-element contact-impact. It avoids both the mass diffusion problems of Eulerian methods

and the mass and energy discard associated with Lagrangian element erosion algorithms. It is

labeled a hybrid (versus coupled) method since it introduces both elements and particles for

all material control volumes, then employs the elements and particles in tandem to represent

distinct physics. The particles model all inertia, contact-impact, and thermomechanical

response in compressed states, while the elements model tension and elastic-plastic shear.

The method incorporates both ellipsoidal particles and time varying particle volumes and as a

result can represent large density variations with relatively small neighbor counts. Previous

work employing nonspherical evolving kernels has been rather limited and most particle

simulations represent high densities using spherical particles, a fixed contact length, and

relatively large neighbor sets.

The preceding formulation combines a true Lagrangian description of material strength
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effects with a general particle based model of contact-impact dynamics, and has been vali-

dated in simulations of impact experiments conducted at velocities ranging from one to ten

kilometers per second [22]. In the hypervelocity impact regime, where large strain plastic-

ity, perforation, fragmentation, melting, and complex multi-structure contact-impact effects

are often present, this formulation provides a particular combination of advantageous fea-

tures not offered by alternative numerical methods. The present paper describes an im-

proved hybrid particle-finite element method, modifying the formulation of Ravishankar

and Fahrenthold [21] in two respects. First, the density is determined by integrating non-

holonomic constraints imposed on the system level thermomechanical model. Second, the

entropy states used previously to model the thermal domain are replaced by particle inter-

nal energies. These modifications simplify the method, reduce its computational cost, and

incorporate equations of state expressed in standard functional form.

Unlike alternative methods, the revised formulation eliminates entirely the use of kernel

or interpolation functions to represent the density or rate of dilatation fields. The density

evolution equations are developed by direct reference to large deformation kinematics, avoid-

ing any requirement to specify the functional dependence of an interaction potential on the

particle coordinates. The latter task has proven to be quite difficult in an SPH context and is

a principal focus of the general particle dynamics literature. The revised method introduces

the use of internal energy variables as generalized coordinates in a new thermomechanical

formulation of the discrete Lagrange equations. This avoids the requirement to construct

Legendre transforms of the internal energy function, in order to express the dependence of

pressure and temperature on entropy.

The present paper is organized as follows. First the particle and element kinematics are

defined, followed by the kinetic co-energy and thermomechanical potential energy functions

for the particle-element system. Second the evolution equations for the density are developed,

followed by the evolution equations for the plastic and damage variables, all of these relations

representing nonholonomic constraints on the system level model. Third the numerical
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viscosity and numerical heat diffusion models are introduced, and evolution equations for

the internal energy state variables are described, the latter states serving as generalized

coordinates in a thermomechanical Lagrangian formulation. Fourth the discrete Lagrange

equations for the particle-element system are derived, taking an explicit state space form

convenient for numerical implementation. Finally application of the method is illustrated

in one dimensional problems with exact solutions and in three dimensional simulations of

representative hypervelocity impact problems.

PARTICLE KINEMATICS

The inertia of the modeled system is represented by a collection of n ellipsoidal particles,

with m(i) the mass of particle i and h
(j)
1 , h

(j)
2 , h

(j)
3 the half-lengths of its major axes. The

position and orientation of each particle is determined by its center of mass position vector

( c(i) ) and an Euler parameter [23,24] vector ( e(i) )

c(i) = [ c
(i)
1 c

(i)
2 c

(i)
3 ]T , e(i) = [ e

(i)
0 e

(i)
1 e

(i)
2 e

(i)
3 ]T (1)

where a superscript T denotes the transpose.

It is convenient to note here certain properties of Euler parameters, and to cite a number

of well known [23] kinematic relations associated with their use. The Euler parameters

provide a singularity free description of arbitrary particle rotations. They define a rotation

matrix (R(i)) for each particle

R(i) = A(i) G(i)T (2)
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
 −e
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which relates vector components v described in a fixed global Cartesian coordinate system

to corresponding components v̂ described in a co-rotating system aligned with the particle

major axes, using

v = R(i) v̂ (5)

The Euler parameters and their time derivatives are related to the angular velocity vector

of the particle ( ω(i) ), described in the co-rotating frame, by

ė(i) =
1

2
G(i)T ω(i) (6)

Similarly the antisymmetric matrix Ω(i) with axial vector ω(i), which satisfies

Ω(i)v = ω(i) × v (7)

for all vectors v, is related to the Euler parameters and their time derivatives by the relations

Ω(i) = 2 G(i) Ġ(i)T = −2 Ġ(i)G(i)T = R(i)T Ṙ(i) (8)

For ellipsoidal particles it is convenient to describe the separation distance of the mass

centers for particles i and j using the ellipsoidal coordinate

ζ(i,j) =
[ (

c(i) − c(j)
)T

Ĥ(j)
(
c(i) − c(j)

) ] 1
2

(9)

defined in the co-rotating system of particle j using

Ĥ(j) = R(j)H(j)R(j)T (10)

H(j) =


 2βh

(j)
1 0 0

0 2βh
(j)
2 0

0 0 2βh
(j)
3



−2

(11)

where the constant β allows for close packing at the reference density. The time derivative

of this ellipsoidal coordinate , defined for i �= j, is

ζ̇(i,j) =
1

ζ(i,j)

[ (
Ĥ(j)r(i,j)

)T

ṙ(i,j) +
(
H(j)r̂(i,j) × r̂(i,j)

)T
ω(j)

]
(12)
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where

r(i,j) = c(i) − c(j), r̂(i,j) = R(j)T r(i,j) (13)

and may be used to quantify the rate of compression for an array of ellipsoidal particles.

The preceding results will be used in later sections to account for rotational inertia and

particle kinematics not present in the vast majority of particle models, which assume a

spherical particle geometry.

FINITE ELEMENT KINEMATICS

This section describes the finite element kinematics employed in the present paper. The

elements used here are eight noded hexahedra, well known and described in detail by Hal-

lquist [11] and others. Since all inertia effects are represented by the particles, no mass

matrix is defined.

Each structure in the model is subdivided into uniform hexahedra with orthogonal faces,

with ellipsoidal particles located at each node and at the centroid of each element. The

center of mass coordinates for particles located at element vertices are also nodal coordi-

nates for the hexahedra, and are used to compute the shearing strain. The center of mass

coordinates for particles located at the element centroids are used, in combination with the

nodal coordinates, to define six subelements for each hexahedron. The volumes of these

subelements are used to compute interparticle tension forces.

The following Lagrangian finite strain deformation measures [25] are used in the stored

energy functions for the elements, associated with tension and shear, and in the plastic

constitutive relations. The shear strain for element j is

E
(j)

=
1

2

(
C

(j) − I
)

(14)

where

C
(j)

= F
(j)T

F
(j)

, F
(j)

=
(
det F(j)

)− 1
3 F(j) (15)

and F(j) is an element deformation gradient computed using one point integration [11]. The
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elastic shear strain is defined as

Ee(j) = E
(j) − Ep(j) (16)

where (Ep(j)) is a plastic stain tensor whose flow rule satisfies the isochoric plastic deformation

constraint

tr
(
Cp(j)−T Ċp(j)

)
= 0, Ep(j) =

1

2

(
Cp(j) − I

)
(17)

The subelement Jacobians are denoted by J (j,k), where the index k designates one of six

subelements for the jth hexahedron.

KINETIC CO-ENERGY AND POTENTIAL ENERGY

An energy method (Lagrange’s equations) is adopted here, to facilitate the systematic

integration of diverse particle and element based modeling concepts. The stored energy

functions considered here are a kinetic co-energy function for the particles, an internal energy

function for the particles, and element potential energy functions which account for tension

and shear. Damage variables are introduced to model element failure in a thermodynamically

consistent fashion. Constitutive assumptions different from those adopted here may be

introduced without change to the underlying methodology.

The system kinetic co-energy is the sum of the particle co-energies

T ∗ =
n∑

i = 1

T ∗(i) (18)

where T ∗(i) is the co-energy for particle i, due to translation and rotation

T ∗(i) =
1

2
m(i) ċ(i) T ċ(i) +

1

2
ω(i) T J(i) ω(i) (19)

with J(i) a constant moment of inertia matrix described in the co-rotating particle frame.

The system kinetic co-energy function defines the generalized momenta

p(i) =
∂T ∗

∂ċ(i)
= m(i) ċ(i) , h(i) =

∂T ∗

∂ω(i)
= J(i) ω(i) (20)

where p(i) and h(i) are translational and angular momentum vectors for the ith particle.
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The system potential energy has the general form

V =
n∑

i = 1

U (i) +
ne∑

j = 1

V e(j)
o ψ(j) +

ne∑
j = 1

ns∑
k = 1

V e(j,k)
o ψ(j,k) (21)

where U (i) is the total internal energy for particle i and the pressure (P (i)) and temperature

(θ(i)) are described by an equation of state [26] with functional form

P (i) = P (i)(ρ(i), u(i)), θ(i) = θ(i)(ρ(i), u(i)) (22)

with ρ(i) and u(i) the density and the internal energy per unit mass

u(i) =
U (i)

m(i)
(23)

The second term depends on the number of elements (ne), the reference volume (V
e(j)
o ) for

element j, and the strain energy per unit volume in shear (ψ(j)), here assumed to be

ψ(j) = (1 − d(j)) µ(j) tr
(
Ee(j)TEe(j)

)
(24)

where d(j) is a shear damage variable and µ(j) is a shear modulus. The third term depends

on the number of subelements per element (ns), the subelement reference volumes (V
e(j,k)
o ),

and the strain energy per unit volume in tension (ψ(j,k)), here assumed to be

ψ(j,k) =
1

2
(1 − D(j)) K(j) < J (j,k) − 1 >2 (25)

where D(j) is a normal damage variable, K(j) is a bulk modulus, < x > denotes the bracket

function

< x > = x û(x) (26)

and û denotes the unit step function. Since the subelement Jacobians and the shear strain

tensor depend on the particle center of mass coordinates

J (j,k) = J (j,k)
(
c(i)

)
, Ee(j) = Ee(j)

(
c(i),Ep(j)

)
(27)

it follows that the system potential energy has the general functional form

V = V
(
ρ(i), U (i), c(i), d(j), D(j),Ep(j)

)
(28)
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The system potential energy defines the generalized conservative forces

m(i) P
(i)

ρ(i)2
=

∂V

∂ρ(i)
, g(i) =

∂V

∂c(i)
, 1 =

∂V

∂U (i)
(29)

as well as the deviatoric stress

S(j) = − 1

V
e(j)
o

∂V

∂Ep(j)
(30)

and the strain energy release rates

ΓD(j) = − ∂V

∂D(j)
, Γd(j) = − ∂V

∂d(j)
(31)

due to damage evolution. Note that when the internal energy is introduced as a generalized

coordinate, the associated generalized forces are constant.

With the system Lagrangian now defined, the next four sections describe evolution equa-

tions for the internal state variables.

DENSITY EVOLUTION RELATIONS

This section derives density evolution relations for the particles, by extending certain

exact results for the deformation kinematics of a unit cell of spherical particles, arranged

in a body centered cubic packing scheme. For uniform compression of such a unit cell, in

isolation, the cell center density ρ(i) is related to the reference density ρo
(i), the center of

mass separation distances r(i,j) and particle radii h(j) for its eight neighbors by

ρ(i)

ρ
(i)
o

= 1 +
1

8

8∑
j = 1

[(
2βh(j)

r(i,j)

)3

− 1

]
(32)

If the particles are not spherical but ellipsoidal then

ρ(i)

ρ
(i)
o

= 1 +
1

8

8∑
j = 1

[(
1

ζ(i,j)

)3

− 1

]
(33)

This expression for an isolated cell may be extended to a cell array of arbitrary size by

describing the same kinematics in rate form. Taking the time derivative of the last equation
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and multiplying by a step function W (i,j) which allows for contact with near neighbors only

yields

ρ̇(i)

ρo
(i)

= −3

8

n∑
j = 1

ζ̇(i,j)

ζ(i,j)4
W (i,j) (34)

where the summation is now over all n particles. The coefficient W (i,j) must satisfy

W (i,j) =




0 if i = j

0 if i �= j and ζ(i,j)3 ≥ ρ
(i)
o

ρ(i)

1 if i �= j and ζ(i,j)3 < ρ
(i)
o

ρ(i)

in order to correctly reflect the dependence of particle contact distance on the local density.

Otherwise particles will contact remote neighbors through intervening matter. Hence

W (i,j) = (1 − δij) û

(
1 − ζ(i,j)

[
ρ(j)

ρo
(j)

]1/3
)

(35)

where δij denotes the Kronecker delta. Note that W (i,j) performs no interpolation. Intro-

ducing the kinematic relation for ζ̇(i,j), developed in an earlier section, yields

ρ̇(i) = −3

8

n∑
j = 1

ρo
(i)W

(i,j)

ζ(i,j)5

[ (
Ĥ(j)r(i,j)

)T

ṙ(i,j) +
(
H(j)r̂(i,j) × r̂(i,j)

)T
ω(j)

]
(36)

which is the constraint form of the density evolution relations. The coefficients of the particle

translational velocities and angular velocities in this expression will determine generalized

forces in the momentum balance (Lagrange) equations derived in a later section. When the

particle velocities in this expression are eliminated in favor of the particle momenta

ċ(i) = m(i)−1p(i), ω(i) = J(i)−1h(i) (37)

the density evolution equations take an explicit state space form convenient for use in nu-

merical simulation.

PLASTICITY AND DAMAGE MODELS

This section introduces evolution equations for the plastic and damage variables. As in the

case of the potential energy, alternative constitutive assumptions may be introduced without
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change to the basic modeling methodology. The plastic flow rule used here is adapted from

reference [27], and represents the simplest possible accommodation of the aforementioned

isochoric plastic deformation constraint. The flow rule is

Ėp(j) =
λ̇(j)

||Sp(j)|| Np(j) N Sp(j) (38)

where λ̇(j) is a positive proportionality coefficient, Sp(j) is an effective stress

Sp(j) = NT Np(j)T S(j) (39)

and the invariant operator is defined by

||T|| =

[
1

2
tr

(
TTT

)]1/2

(40)

for any second order tensor T. The fourth order tensor coefficients in the flow rule are

defined by

Np(j) T =
1

2 ||Cp(j)||(C
p(j) T + T Cp(j)) (41)

N T = T − 1

3
tr(T) I (42)

for any symmetric second order tensor T. The yield function is

f (j) = ||Sp(j)|| − Y (j) (43)

where Y (j) is the yield stress

Y (j) = Y (j)
o (1 − d(j)) (1 + κ(j)εp(j))α(j) (

1 − η(j)θH(j)
)

(44)

with εp(j) the effective plastic strain, κ(j) a strain hardening coefficient, α(j) a strain hardening

exponent, η(j) a thermal softening coefficient, and θH(j) the homologous temperature. The

effective plastic strain is determined by integrating the rate relation

ε̇p(j) = ||Ėp(j)|| (45)
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while the incremental plastic strain for a time step ∆t is computed using

∆λ(j) =
< ||Sp(j)|| − Y (j) >

(1 − d(j)) 2 µ(j)
(46)

The damage evolution equations applied here are adapted from reference [28], and dissi-

pate the strain energy stored in tension and shear over n̂ time steps, once an element meets

any stipulated material failure criteria. The evolution equations are

Ḋ(j) =
Λ(j)

n̂ ∆t
û(1 − D(j)), ḋ(j) =

Λ(j)

n̂ ∆t
û(1 − d(j)) (47)

where Λ(j) is initialized to zero, and is set to a value of one when the accumulated plastic

strain, temperature, or element compression reach corresponding critical values for the plastic

failure strain (ε
p(j)
f ), melt temperature (θ

(j)
m ), or maximum compression (J

(j)
c ). Other failure

criteria may of course be specified.

In general terms, the plastic and damage evolution equations are noholonomic constraints

of the form

Ėp(j) = Ėp(j)
(
ρ(i), U (i), c(i), d(j), D(j), εp(j),Ep(j)

)
(48)

ḋ(j) = ḋ(j)
(
ρ(i), U (i), c(i), d(j), D(j), εp(j),Ep(j)

)
(49)

Ḋ(j) = Ḋ(j)
(
ρ(i), U (i), c(i), d(j), D(j), εp(j),Ep(j)

)
(50)

on the system level Lagrangian model.

ARTIFICIAL VISCOSITY AND HEAT DIFFUSION

Shock physics codes of the continuum or particle type incorporate a numerical viscosity

and artificial heat diffusion. The forms used here are typical of particle codes, with one

exception. Since the ellipsoidal particles used here admit rotational degrees of freedom, a

viscous torque has been added which damps the relative rotation of neighboring particles.

A viscous force is introduced for converging particles only

f (i) =
n∑

j = 1

ν(i,j) max
(
0, v(i,j)

) (
c(i) − c(j)

)
| c(i) − c(j) | û(1 − ζ(i,j)) (51)
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where the relative normal velocity is

v(i,j) = − (
ċ(i) − ċ(j)

) ·
(
c(i) − c(j)

)
| c(i) − c(j) | (52)

and the viscosity coefficient is

ν(i,j) =
co

2

(
ρ(i)

o c(i)
s V (i)

o

2
3 + ρ(j)

o c(j)
s V (j)

o

2
3

) [
1 +

2 c1|v(i,j)|
(c

(i)
s + c

(j)
s )

]
(53)

with c
(i)
s and V

(i)
o a soundspeed and particle reference volume. The parameters co and c1 are

nondimensional linear and quadratic numerical viscosity coefficients.

Similarly the viscous torque is

M(i) =
n∑

j = 1

σ(i,j) R(i)T
(
R(i)ω(i) − R(j)ω(j)

)
û(1 − ζ(i,j)) (54)

where the torsional damping coefficient is

σ(i,j) =
co

2

(
ρ(i)

o c(i)
s V (i)

o

4
3 + ρ(j)

o c(j)
s V (j)

o

4
3

)
(55)

Finally the thermal power flow due to artificial heat diffusion is taken to be

Q̇con(i) =
n∑

j = 1

R(i,j) ( θ(i) − θ(j) ) û(1 − ζ(i,j)) (56)

where the heat transfer coefficient is

R(i,j) =
ko

2

(
ρ(i)

o c(i)
s c(i)

v V (i)
o

2
3 + ρ(j)

o c(j)
s c(j)

v V (j)
o

2
3

)
(57)

with c
(i)
v a specific heat and ko a numerical heat diffusion coefficient.

INTERNAL ENERGY EVOLUTION EQUATIONS

The last internal state variable to be considered is the internal energy. The introduction

of internal energy states as generalized coordinates allows the thermomechanical problem of

interest here to be solved using energy methods.

The internal energy evolution equations for particle i are

U̇ (i) = U̇wrk(i) + U̇ irr(i) − U̇ con(i) (58)
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where the first term accounts for mechanical work, the second term accounts for the effects

of irreversible entropy production, and the third term represents numerical heat diffusion.

The mechanical power flow for particle i is

U̇wrk(i) = m(i) P
(i)

ρ(i)2
ρ̇(i) (59)

The energy dissipation due to irreversible entropy production for particle i depends on the

viscous forces and torques, which act on the particles, and on the dissipation in the elements

U̇ irr(i) = f (i)T ċ(i) + M(i)T ω(i) +
n∑

j = 1

φ(i,j) Q̇irr(j) (60)

where Q̇irr(j) is a power flow due to damage evolution and plastic deformation in element j

Q̇irr(j) = ΓD(j)Ḋ(j) + Γd(j)ḋ(j) + V e(j)
o tr

(
S(j)T Ėp(j)

)
(61)

and φ(i,j) is the fraction of the dissipation in element j associated with particle i.

Finally the internal energy flows due to numerical heat diffusion are

U̇ con(i) = Q̇con(i) (62)

As in the case of the density evolution equations, a constraint form of the internal evolution

relations is used to identify the generalized forces which appear in the Lagrange equations

developed in the next section. For numerical implementation of the method, the generalized

velocities are eliminated by introducing the momentum states as well as evolution relations

for the density, plastic, and damage state variables. The resulting internal energy evolution

relations take an explicit state space form.

LAGRANGE’S EQUATIONS

The preceding sections defined stored energy functions and nonholonomic constraints for

the thermomechanical particle-element system. This section develops the final ODE model.

The results of Shivarama and Fahrenthold [21] allow in the present case Lagrange’s equations
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to take the canonical form

ṗ(i) = −g(i) + qc(i), ċ(i) = m(i)−1 p(i) (63)

ḣ(i) = −Ω(i)h(i) + Qc(i), ė(i) =
1

2
G(i)TJ(i)−1h(i) (64)

∂V

∂ρ(i)
= Qρ(i),

∂V

∂U (i)
= QU(i) (65)

∂V

∂d(j)
= Qd(j),

∂V

∂D(j)
= QD(j),

∂V

∂Ep(j)
= Qp(j) (66)

where qc(i), Qc(i), Qρ(i), QU(i), Qd(i), QD(i), and Qp(j) are generalized forces determined by

the nonholonomic constraints. The degenerate forms of the Lagrange equations for the

internal state variables are due to the fact that those variables are not associated with any

generalized momenta. Introducing Lagrange multipliers γρ(i), γU(i), γd(j), γD(j), and Xp(j)

for the constraints, the generalized forces are found to be

qc(i) = −γU(i) f (i) +
3

8

n∑
j = 1

[
γρ(i)ρ(i)

o

W (i,j)

ζ(i,j)5
Ĥ(j)r(i,j) − γρ(j)ρ(j)

o

W (j,i)

ζ(j,i)5
Ĥ(i)r(j,i)

]
(67)

Qc(i) = −γU(i) M(i) +
3

8

n∑
j = 1

γρ(j)ρ(j)
o

W (j,i)

ζ(j,i)5

(
H(i)r̂(j,i) × r̂(j,i)

)
(68)

Qρ(i) = γρ(i) (69)

QU(i) = γU(i) (70)

Qd(j) = γd(j) −
n∑

i = 1

γU(i) φ(i,j) Γd(j) (71)

QD(j) = γD(j) −
n∑

i = 1

γU(i) φ(i,j) ΓD(j) (72)

Qp(j) = Xp(j) −
n∑

i = 1

γU(i) φ(i,j) V (j)
o S(j) (73)
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These results allow the unknown Lagrange multipliers to be determined in closed form, so

that the final Lagrange equations are

ṗ(i) = −g(i) − f (i) + q(i) (74)

ḣ(i) = −Ω(i)h(i) − M(i) + Q(i) (75)

ċ(i) = m(i)−1 p(i) (76)

ė(i) =
1

2
G(i)TJ(i)−1h(i) (77)

where the generalized forces and torques due to particle interactions are

q(i) =
3

8

n∑
j = 1

(
V (i)

o

P (i)

ρ(i)2

W (i,j)

ζ(i,j)5
Ĥ(j) + V (j)

o

P (j)

ρ(j)2

W (j,i)

ζ(j,i)5
Ĥ(i)

)
r(i,j) (78)

Q(i) =
3

8

n∑
j = 1

V (j)
o

P (j)

ρ(j)2

W (j,i)

ζ(j,i)5

(
H(i)r̂(j,i) × r̂(j,i)

)
(79)

Supplemented by the evolution equations for density, internal energy, shear damage, normal

damage, and plastic strain, the result is an explicit first order ODE model for the thermo-

mechanical particle-element system.

EXAMPLE SIMULATIONS

This section describes four example problems which illustrate application of the improved

particle-element method developed in this paper. The first two examples involve one dimen-

sional test problems with known exact solutions. The third and fourth example problems

involve three dimensional simulations. The third example models a published experiment

while the fourth example measures the relative computational cost of the present method in

a hypervelocity impact application of current research interest.

The first example is the wall shock problem of Noh [31]. The simulations employ an ideal

gas equation of state

P = (γ − 1) ρ (u − uo), θ =
1

cv

(u − uo) (80)
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and the parameters shown in Table 1. This problem models the collision of a fluid stream

located initially in the region 0.0 < x < 0.5 with a rigid wall located at x = 0. The initial

conditions are ρ = ρo, u = uo, and v = −1. Figures 1 through 4 plot the simulation results for

velocity, density, pressure, and temperature at the stop time of 0.3, for a model composed of

200 particles. The numerical results show good agreement with the exact solution, although

better results have been obtained using finite difference and finite element methods [31,35].

Table 2 shows convergence of the simulation results, as the particle count is increased, in

terms of the velocity error norm

‖ e ‖v =

{
1

n

n∑
i = 1

[
v(i) − v̂(x(i))

]2

}1/2

(81)

and the temperature error norm

‖ e ‖θ =

{
1

n

n∑
i = 1

[
θ(i) − θ̂(x(i))

]2
}1/2

(82)

where v̂ and θ̂ denote the exact solutions for the velocity and temperature.

The second example is the bar impact problem of Kolsky [33]. The simulations employ a

linear isothermal equation of state

P = K (ρ/ρ0 − 1) (83)

and the parameters shown in Table 3. This problem models the one dimensional motion

of an elastic bar of length L subjected to a step tensile pressure loading of magnitude Pext,

applied at the end x = L at time t = 0. Figures 5 and 6 plot the simulation results for the

bar midpoint velocity versus time, to a stop time of 0.001 seconds, for two different particle

counts. The numerical results show good agreement with the exact solution. The results

shown in Figure 5 are quite similar to those reported by Lu et a. [34], at the same particle

count, employing an element-free Galerkin method with an explicit integration algorithm.

The third example problem models the oblique impact of a tungsten alloy (DX2HCMF)

rod on a steel (SIS 2541) plate, an experiment described in references [29] and [30]. The
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simulations employed a Mie-Gruneisen equation of state [32] and the material properties

[30,32] listed in Table 4. The cylindrical projectile has a diameter of 0.5 cm and a length

of 7.5 cm (L/D = 15). The simulation models a 1.5 km/s impact on a 0.5 cm thick plate

at a sixty degree obliquity, and was run at three different particle counts. Figures 7 and 8

show the initial configuration and the simulation results at 100 microseconds after impact,

while Figures 9 and 10 show sectioned views at 20 and 40 microseconds after impact. This

simulation illustrates the fact that the present method retains all material fragments and

models contact-impact of all intact and fragmented material. Table 5 provides simulation

results, at several particle counts, for the residual rod length and residual rod velocity,

showing good agreement with the corresponding experimental values (6.38 cm and 1.46

km/s). The simulation results shown here differ by less than three percent from those

reported by Lee and Yoo [30] for Lagrangian finite element methods.

The fourth example problem models the oblique impact of an aluminum sphere on a re-

inforced carbon-carbon plate. This example does not model a specific experiment; rather it

was used to measure the improved computational efficiency of the method described here,

in a hypervelocity impact application of current research interest [6,36]. The projectile ma-

terial, diameter (0.618 cm), and impact velocity (7 km/s) represent a typical orbital debris

impact threat [4], while the target plate thickness (0.47 cm) is characteristic of reinforced

carbon-carbon components of the Space Shuttle thermal protection system [6]. Experimen-

tal studies of the mechanical properties of reinforced carbon-carbon are in progress; the

material properties used in the simulations are listed in Table 6. A total of six simulations

were performed, at three different particle counts, to measure the the computational cost

of density calculations made using interpolations kernels, as compared to the nonholonomic

formulation developed in the present paper. Each simulation was run to a stop time of ten

microseconds, sufficient to perforate the target and include the shock loading and fragmen-

tation processes of central interest in hypervelocity impact applications. Figures 10 through

15 show representative simulation results. Table 7 lists the wall clock times and processor
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counts for the simulations, run on a Linux cluster composed of dual processor (3 GHz) nodes.

The results show the relatively high computational cost of kernel based density calculations,

in the present hybrid particle finite element context. Wall clock times are increased for all

three problem sizes and associated processor counts, by an average factor of one third. This

result is not surprising, since the finite element related portion of the computation is rela-

tively inexpensive [22], while most of the particle related computations are performed in two

sequential routines: one loops over all neighbor particles to determine the density, the second

loops again over all neighbor particles to compute the particle interaction forces. The effect

of introducing the nonholonomic density calculation developed here is to eliminate the first

of these two routines. Considering the very high computational costs of three dimensional

shock physics problems, the measured reduction in wall clock time is significant.

CONCLUSION

The present paper has formulated a new kernel free particle-finite element method and

demonstrated its application in three dimensional hypervelocity impact simulations. Unlike

alternative methods, the formulation is derived without reference to any weighting or in-

terpolation functions for either the density or the rate of dilatation. The improved method

introduces a new formulation of the thermomechanical Lagrange equations, one which em-

ploys internal energies as generalized coordinates. This avoids the requirement to perform

certain Legendre transforms, in order to express the dependence of the pressure and tem-

perature on entropy, and hence allows for the use of equations of state in standard form. As

compared to the previous formulation, the revised method is both simplified and computa-

tionally more efficient. Applications work in progress is focused on the simulation of orbital

debris impact effects on spacecraft thermal protection materials [6].
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Table 1. Simulation parameters for the wall shock problem

Ratio of specific heats (γ) 5
3

Specific heat (cv) 1.0
Reference internal energy (eo) 1.0

Reference density (ρo) 1.0
Reference temperature (θo) 1.0

Numerical viscosity coefficient (co) 1.0
Numerical viscosity coefficient (c1) 0.0

Numerical conduction coefficient (ko) 0.1

Table 2. Error norms for the wall shock problem

Number of particles Velocity error norm Temperature error norm
100 0.17116 0.08594
200 0.12141 0.06075
400 0.08635 0.04325
800 0.06081 0.03032

Table 3. Simulation parameters for the bar impact problem

Length of the bar (L, in) 100
Bulk modulus (K, psi) 30.0 × 106

Applied end loading (Pext, psi) 50.0 × 103

Reference density (ρo, pci) 0.73 × 10−3

Numerical viscosity coefficient (co) 1.0
Numerical viscosity coefficient (c1) 0.0
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Table 4. Material properties used in the long rod impact simulations

Material property Projectile Target
Reference density (g/cc) 17.6 7.87
Shear modulus (Mbar) 1.45 0.801

Reference yield stress (Mbar) 0.0075 0.0105
Strain hardening coefficient 1.15 0.177
Strain hardening exponent 0.49 0.12

Thermal softening coefficient 1.0 1.0
Melt temperature (deg K) 1,700 1,723

Specific heat (Mbar-cm3 per g-deg K) 0.143e-5 0.448e-5
Plastic failure strain 1.0 1.0

Table 5. Simulation results for the long rod impact problem

Number of particles Residual length Residual velocity
(cm) (km/s)

35,992 6.08 1.42
92,498 6.47 1.42
187,826 6.59 1.42

Table 6. Material properties used in the plate impact simulations

Material property Projectile Target
Reference density (g/cc) 2.70 1.58
Shear modulus (Mbar) 0.271 0.0718

Reference yield stress (Mbar) 0.0029 0.000771
Strain hardening coefficient 125.0 2.0
Strain hardening exponent 0.10 1.0

Thermal softening coefficient 0.567 -1.0
Melt temperature (deg K) 1,220 3,840

Specific heat (Mbar-cm3 per g-deg K) 0.884e-5 0.712e-5
Plastic failure strain 1.0 0.5
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Table 7. Relative computational costs for the plate impact simulations

Particles Density calculation Processors Wall clock hours Relative cost
21,334 nonholonomic 4 1.2611 1.000
21,334 kernel 4 1.7581 1.394
63,253 nonholonomic 6 4.5047 1.000
63,253 kernel 6 5.8078 1.289
140,070 nonholonomic 8 28.8933 1.000
140,070 kernel 8 38.1411 1.320
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Figure 1. Wall shock problem, velocity versus position at t = 0.3.

Figure 2. Wall shock problem, density versus position at t = 0.3.
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Figure 9. Long rod impact problem, sectioned particle-element plot at 20 microseconds

after impact, color on temperature.

Figure 10. Long rod impact problem, sectioned particle-element plot at 20 microsec-

onds after impact, color on temperature.

Figure 11. Plate impact problem, element plot of the initial configuration.

Figure 12. Plate impact problem, particle-element plot at 10 microseconds after im-

pact.

Figure 13. Plate impact problem, element plot at 10 microseconds after impact.

Figure 14. Plate impact problem, sectioned particle-element plot at 10 microseconds

after impact, color on temperature.

Figure 15. Plate impact problem, sectioned element plot at 10 microseconds after

impact, color on effective plastic strain.
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Figure 1: Wall shock problem, velocity versus position at t = 0.3.
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Figure 2: Wall shock problem, density versus position at t = 0.3.
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Figure 3: Wall shock problem, pressure versus position at t = 0.3.

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

temperature

Figure 4: Wall shock problem, temperature versus position at t = 0.3.
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Figure 5: Bar impact problem, midpoint velocity versus time for 51 particles.
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Figure 6: Bar impact problem, midpoint velocity versus time for 101 particles.
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Figure 7: Long rod impact problem, element plot of the initial configuration.
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Figure 8: Long rod impact problem, particle-element plot at 100 microseconds after impact.
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Figure 9: Long rod impact problem, sectioned particle-element plot at 20 microseconds after
impact, color on temperature.
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Figure 10: Long rod impact problem, sectioned particle-element plot at 40 microseconds
after impact, color on temperature.
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Figure 11: Plate impact problem, element plot of the initial configuration.
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Figure 12: Plate impact problem, particle-element plot at 10 microseconds after impact.
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Figure 13: Plate impact problem, element plot at 10 microseconds after impact.
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Figure 14: Plate impact problem, sectioned particle-element plot at 10 microseconds after
impact, color on temperature.
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Figure 15: Plate impact problem, sectioned element plot at 10 microseconds after impact,
color on effective plastic strain.
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